Implementing the MetaVCG approach
in the C-light system

Dmitry Kondratyev
A. P. Ershov Institute of Informatics Systems
Novosibirsk, Russia
Email: apple-66Q@mail.ru

Abstract—Among the problems that can confront a verifica-
tion system developer, the addition of new axiomatic rules is of
great interest. Not only theoretical properties of a Hoare logic
(first of all, soundness and completeness) can be endangered
by such activity, but also the recoding of verification condition
generator (VCG) is required in practice. The error-prone process
of manual reprogramming can compromise the very idea of
verification system. Can we trust a program verified by (possibly)
faulty system? While the self-verified system is still a challenge
(though some steps towards it are already taken), as for its VCG-
part, there is a method providing a greater level of reliability.
In 1980, Moriconi and Schwartz represented the MetaVCG
approach, regretfully abandoned. In this article, we would like
to describe our efforts to implement this approach in the C-light
system.

Keywords—Verification, specification, axiomatic semantics, the
C-light language, ACSL, MetaVCG

I. INTRODUCTION

The axiomatic semantics serves as a formal basis for
deductive program verification [1]. Its implementation usually
takes the form of verification condition generator (VCGQG).
When verification is studied for a simple model language, the
VCG can be implemented once and for all. But in practice,
it may require expansion. What could be the reasons for the
expansion?

First, the program language itself may be enriched by new
constructions. For example, in our project of the C program
verification we introduced a subset, called C-light [8], as a
starting point. This subset is quite representative, but still does
not cover some low-level aspects of the C language. During
the project evolution we added new constructions to the C-
light. And yet, new expansions are to come. First of all, the
newest standard of the C language is of great interest. Also,
the C-light may serve as a basis for the kindred languages
(Objective C, C++).

Second, the practical verification can require development
of specialized versions of VCG for narrow classes of programs.
Compared to the expansion of the language, such specialization
(in fact, restriction) is not so obvious. However, it can play
crucial role if we try to simplify the verification. Two examples
can clarify this point.

As a start, let us consider a pattern code

This research is partially supported by the Russian Foundation for Basic
research (project no. 15-01-05974)

Alexei Promsky
A. P. Ershov Institute of Informatics Systems
Novosibirsk, Russia
Email: promsky@iis.nsk.su

swap(z,y,buf) = memcpy (buf, x, m);
memcpy (X, y, m);
memcpy (y, buf, m);

which can be found in some library routines (gsort, for
example). Its treatment by general axiomatic rules will involve
a triple instantiation of specifications for memcpy leading to
a cumbersome quantified VC. In the meantime, we can enrich
the Hoare system by the following axiom:

{z =20 Ny =yo} swap(z,y,buf) {x =yo ANy =20}

Though it works only for those programs which contain
a fragment swap(..), its application can simplify the proof
considerably.

Another example relates to the linear algebra programs. A
Hoare system for this applied area was developed in the The-
oretic programming Lab of our institute quite ago [10]. Given,
M is a two-dimensional matrix and e(k,i) is an expression
depending on matrix indices k and ¢, consider the following
Hoare triple:

{Q(M <_T6p(Ma mat(el,62,63,64),6(S,t)))}
for(k = e1; k <= eq; k++)
for(i = e3; 1 <= ey4; i++)

M[k][1] =e(k,i);
{Q}

where matrix rep(M, mat(ey, ea, e3,e4), (s, t))) results from
replacement of all elements corresponding to sub-matrix
mat(ey, e, €e3,e4) by expression e. The usual treatment of
loops in axiomatic semantics is based on the loop invariants,
which have always been one of the annoying features of this
approach. But, as you can see here, two invariants for two
nested loops were replaced by application of some logical
constructs (rep and mat). A complete logical axiomatization
of them can be found in [9].

An interim conclusion here is that the expansion of ax-
iomatic semantics (and its VCG implementation, correspond-
ingly) is inevitable in practice. Moreover, an enormous VCG,
which covers all possible classes of programs, is hardly an
option. A collection of specialized VCG could be a better so-
lution. Thus, any method that can facilitate the reprogramming
of the base VCG or development of the new ones, is of great
interest for us.

Fortunately, there is a quite appropriate technique. In 1981,
Moriconi and Schwartz [6] proposed a method which forms a

Analysis
and
transformation

Program
in the internal
form

Annotated

MetaVCG

Recursively
defined
VCG

Proof
environment

Verification
conditions

A “meta-stage” in the verification process

Fig. 1.

meta verification condition generator (MetaVCQG). It takes a
Hoare logic as an input and automatically derives a recursively
defined VCG. The axiomatic rules must be given in a normal
form with several constraints. Many axiomatic rules do not
satisfy them, so the authors provided an equivalence-preserving
transformation from a more liberal general form into a normal
one. The soundness and completeness were proved for their
method, thus providing that a produced VCG is correct w.r.t.
the original axiomatic definition.

In the presence of this meta-stage, the classical three-block
scheme (input analyzer/VCG/prover) of a verification system
changes slightly (Fig. 1).

Apart from automatic creation of VCGs, this approach has
another benefit for us. An ultimate goal of our project is the
development of a self-applicable verification system for the C
language [12]. However, at the moment we use the C++ API of
the compiler Clang for the “Analysis and transformation” block
on Fig. 1. An intermediate translation of Clang AST into the C
structures allowed us to implement MetaVCG using the C-light
language, thus, promising a more complete self-verification.
Some experiments were successfully conducted [13].

In the rest of this paper we give an overview of the
MetaVCG approach as well as its implementation in our
system.

II. META VERIFICATION CONDITION GENERATION

The method of metageneration proposed by Moriconi and
Schwartz [6] consists of two steps. A general axiomatic
definition is first transformed into a normal form which, in
turn, develops into a recursively defined VCG.

A. Preliminary definitions

Following Moriconi and Schwartz, we will use metavari-
ables P, O, R, T, ... to denote partially interpreted first-order
formulas. These formulas can contain uninterpreted predicate
symbols P, @, R, ... and formulas from the underlying theory.
For example, P could denote P, PAx = 5, or x = 5. We
assume that the symbols P, @), R,... may be instantiated by
formulas in the underlying theory.

We also need a binary relation <= on uninterpreted predi-
cate symbols. For a Hoare sentence of the form

{P(Py, ..., Pn)} S {QAQ1,....Qn)}

where the predicate symbols Pi,..., P, and @1, ...,Q, are
logically free in P and Q, respectively, we have

P,<=Q,, forie{l,..,m}andje{1,..,n}

Intuitively, a relation P < (@ indicates that the binding of
the predicate symbol P depends upon the binding of (). The
relation < is defined with respect to a set of Hoare triples.

The notation <—£ denotes the transitive closure of <.

Similarly, for a rule of the form

{P} S1{91}, ..y {Pn} Sn {Qn},T
{7} 5 {Q}
the relation < defines the dependence of a proof concerning
S on proofs of Si,...,5,. In particular, we have S < 5,
for i € {1,...,n}. For a Hoare axiom system, we define the
transitive closure <+ in the obvious manner.

ey

We use the function FreePreds to denote the set of
logically free predicate symbols. FreePreds applied to a
first-order formula denotes its logically free symbols. Then
inductively,

FreePreds({P} S {Q}) = FreePreds(P)JUFreePreds(Q) ,
and for a proof rule R of the form (1)

FreePreds(R) = U FreePreds({P;} S; {Q;})
i=1

U FreePreds(T') U FreePreds({P} S {Q})

We will use the function F'ragVars to denote the set of
“fragment variables” in the program fragment S of a Hoare
triple {P} S {Q}. For example, FragVars applied to "if
(B) S else Sy” has the value {B, S, S2}. If applied to
an entire Hoare rule, F'ragVars yields a set containing the
fragment variables from every Hoare sentence in the rule.

Finally, we define the notion of a bound occurrence of
an uninterpreted predicate symbol in a rule. For a rule R, a
predicate symbol in FreePreds(R) is bound in R iff it is in
FragVars(R). Otherwise, the occurrence is said to be free in
R.

B. The normal form for rules

Let us consider the following

Definition. A normal form rule is any instance N of

{P1} S {Q1} oy {Pa} S0 {Q0}, T
Py s{e}

that satisfies the following constraints:

1) Pi,.., P, and @ are predicate symbols free in V.

2) FreePreds(T') C FreePreds(N)U FragVars(S).

3) The fragment variables of each S; must be
bound in S. That is, it must be the case that
Ui<i<nFragVars(S;) C FragVars(S).

4) Dependency ordering. The Hoare-triple premises of
N must satisfy two dependency constraints.

a. PBEP Di<j
b. TEUA-EBRUZER > U=QVU bound
in N
5) Monotonicity. Let P[P + false, P € s] denote P
with the proper substitution of false for each predicate

P in the set s. Then, the following constraint on P
must be satisfied:

PPy, ..., Py, Q < true] V
Vs C{P1,..., Pp,Q} =P|P « false, P € s

This constraint must hold for I" and for each Q);.

Two constraints are imposed on a system of the normal
form rules: (i) Any terminal string o in the programming
language can be an instance of at most one language fragment
S defined by a normal form axiom or an inference rule. (ii)
The relation <+ must be irreflexive. .

Constraint 4 ensures that VCG will be able to compute
instantiations for all free uninterpreted predicate symbols in
the rules. In particular, constraint 4a requires an ordering of
free predicate symbols that is made apparent by the following
schema:

{P1} S1{Q (P2, s Po) o AR} Si {Qi(Pivrs -
vy {Pn} Sn {90}, T

{P(Pr,..,Q)} S{Q}

This has the effect of eliminating dependency cycles, such as
a premise of the form {P} ... {P} or a pair of premises of
the form {P} ... {R} and {R} ... {P}. Given this ordering,
constraint 4b ensures that the tail of every dependency chain
is either expressible as a function of the postcondition @ or is
bound in a program fragment.

)P'n/)}7

Constraint 5 is necessary for completeness of a VCG,
i.e. it guarantees that VCG is able to compute the weakest
precondition wp(S, Q) for given S and Q. It is done by
imposing a monotonicity constraint on rules, which eliminates
the rules where certain “changes of sign” exist between the
preconditions of the premises and the precondition in the
conclusion.

C. The general form for rules and its translation into the
normal one

The normal form constraints serve two purposes. First, a
recursively defined VCG can be built up automatically for
the normal rules. Indeed, since the preconditions of premises
are individual predicate symbols, they can be substituted by
the weakest preconditions for the corresponding programs
and postconditions. For a rule of the form (1), the recursive
function wp is defined as follows:

U)p(S, Q) = (‘P[Pl — wp(S17 Ql)) 7Pn — wp(STH Qn)]/\
(VO)I'[Py < wp(S1,91), ..., P < wp(Sn, Q)]
where [P < {1, ..., P, + t,] denotes n subsequent substitu-

tions performed from left to right, and v is a set of free logical
variables of T'.

Second, the constraints together with the definition of wp
allow us to prove that VCG (as a proof system) is sound and
complete w.r.t. the initial Hoare system in the normal form [6].

On the other hand, the normal form constraints narrow the
class of admissible Hoare systems. Note that axiomatic se-
mantics for C-kernel [5], which is an intermediate language of
our project, does not satisfy these requirements. Moreover, the
normal form rules look quite unusual, which is why Moriconi
and Schwartz proposed a more liberal general form for rules
as well as an algorithm of its translation into the normal one.
Here we discuss them only briefly. The general form preserves
the constraints (1-3) and (4b) (together with a modified mono-
tonicity property). Thus an awkward order on the premises
disappears. Further, the preconditions in premises may take
more forms: not only singular predicate symbols but also
formulas of the underlying theory, as well as the conjunctions
of these two variants. The idea of the translation algorithm is as
follows: we gather all preconditions that are different from the
singular predicate symbols. Instead of them we will use “fresh”
predicate symbols. The connection between these new symbols
and old formulas is established by some implications where
old formulas may be gathered in conjunctions (simultaneously
removing duplicates). Finally, the new rule premises must be
reordered to satisfy the constraint (4a).

To illustrate, let us consider the proof rules for if and
while statements in the general (2), (4) and equivalent normal
(3), (5) form correspondingly:

{PAB} S {Q}, {PAN-B}S; {Q})
{P} if (B) S; else S {Q}
{P} S1{Q}, {P} S:{Q} 3)
{BD> PiA-BD P} if (B) S else 5> {Q}
{PAB}S{P}, PAN-BDQ @)
{P} while (B) S {Q}
{P}S{P}, PA-B5Q PABOPR g

{P} while (B) S {Q}

An intermediate conclusion here is that axiomatic seman-
tics for C-kernel fits the requirements of the general form. So,
it can be translated in an equivalent normal system which,
in turn, can be transformed into a recursive VCG. Thus the
MetaVCG approach can be applied in our case.

III. IMPLEMENTATION AND EXPERIMENTS

In this Section we discuss the composing parts of our
adaptation of the MetaVCG approach. They include the devel-
opment of the pattern language which is used to express the
Hoare rules and axioms. The main (meta)generation algorithm
has been written in C-light, thus making its partial verification
possible. An example of the code is also presented here.

First of all, let us note the difference between the original
idea of MetaVCG and our implementation. Our metagenerator
is a two-parameter function and there is currying during its
work. So, if H is a Hoare system and AP is an annotated
program to be verified, then

MetaVCG(H, AP) = VCGy (AP)

where VCG is an ordinary generator built for H. This is not
a good solution from the point of view of efficiency since in
every verification experiment (the argument AP) we rebuild
the generator even if the Hoare system is the same (say, Hoare
system for C-kernel). On the other hand, it allows us to verify a
single program instead of two, one of which ’appears’ prior to
any specification. As long as we are concentrated on theoretical
studies, this strategy serves our purposes quite well. In future
we may use the generator in a usual way as a stand-alone
application or a plug-in.

We also do not restrict our MetaVCG to the weakest
precondition strategy used by Moriconi and Schwartz. The
strongest postcondition approach can be applied changing the
direction of the program tree analysis.

A. The pattern language

A VCG built from a Hoare system in the normal form
tries to instantiate those free predicate symbols and fragment
variables with specific annotations and program constructs.
Since a user provides MetaVCG with axioms and rules in a
less restricted general form, we propose a pattern language to
express them.

Let us note that the classic way to represent Hoare logics
(like in Section II-A) is good enough in theory but it is not so
flexible in practice. That is why we do not require strictly that
the symbols P, @), R express predicates while S; are program
fragments. Any symbols can be used, and membership in a
specific class is indicated by syntactic wrapping. For example,
the construction any_code (S) can match any sequence (in-
cluding empty) of programming language statements, whereas
exists_code (S) corresponds to a singular construction.
The construction simple_expression denotes any expres-
sion which does not contain function calls and type casts.

To illustrate this, let us consider the assignment axiom

{ (any_predicate (Q))
(MD <- upd(MD, loc(val(e, MeM..STD)),
cast (val (val (e’, MeM..STD)),

type(e’, MeM, TP),
type (e, MeM, TP))))

}

e = simple_expression(e’);
{any_predicate (Q) }

and the proof rule for the while statement

{(P1} S {INV},
(INV /\ cast (val(val (e, MeM..STD)),

type (e, MeM, TP), int) = 0)
=> QI
(INV /\ cast (val(val (e, MeM..STD)),
type (e, MeM, TP), int) != 0)
=> P1

| —
{any_predicate (INV) }

while (simple_expression(e)) any_code (S)
{any_predicate (Q) }

To save the space, we show them as if they were already
transformed from the general form. That is why two logical

statements about predicates Q and P1 appear in the while-
rule premises. Only then the rule satisfies the constraints of
the normal form. The names MD, MeM and STD reflect our
detailed memory model [5] but they do not alter principally
the logical structure of the familiar Hoare sentences.

B. Implementation of MetaVCG

The arguments of metagenerator — Hoare axioms and rules
together with an annotated program — are parsed and trans-
formed into the corresponding internal representations. We
have already mentioned that on the lower level the C++ API of
the compiler Clang was enabled. Thus actually they are passed
from the Clang representation into structures compatible with
C-light.

As an example, let us consider the datatype
pattern_node which represents axioms and conclusions
of Hoare rules.

struct pattern_node

{

int is_omitted;

int has_category;
charx category;

int has_identifier;
char identifier[64];

int has_type;
charx type;

int has_value;
charx value;

int is_matched;
int table_length;
char match_identifiers[2][1000][64];

int children_count;
struct pattern_nodex children[1000];
bi

Since we deal with axiomatic semantics, it is obvious that
the first and the last node in the children list are a pre- and post-
condition, correspondingly. Each node has attributes (category,
identifier, type) which contribute to the matching process. In
addition, there is a table of correspondence between the pro-
gram and pattern names which is filled up during the matching.
The program tree is based on the datatype program_node
which, in general, is similar to pattern_node.

Thus the metagenerator builds a program tree for an
annotated program and a collection of patterns for an applied
Hoare system. According to the proof direction, it chooses the
leftmost/rightmost program construction and tries to find an
appropriate pattern. For a selected pattern it recursively applies
to the premises of the corresponding Hoare rule.

The implementation of MetaVCG is quite large, so let us
restrict ourselves to two functions in the rest of this Section.
As for the main tree comparison algorithm (programs against
patterns), at the moment we use a “greedy” algorithm. Such
algorithm can be applied successfully thanks to the simplicity

of the C-light language. Perhaps, consideration of the complete
C or complex applied program domain will require a more
general approach.

C. Verification examples

When comparing the pattern tree node with a node of
the program tree we also match the node attributes, including
their identifiers. For convenience, we call the current nodes
of the corresponding trees simply as pattern, and code.
If both nodes have identifiers, we must check whether the
identifier of pattern was early matched against any program
construction identifier. This comparison is carried out using
a scan of table match_identifiers. If the validation
fails, then the identifier of pattern is associated with the
identifier of code. So, we want to place this information in
the table match_identifiers, stored in pattern. We
use the function add_identifier, the annotated definition
of which looks like!

/@
requires \valid(pattern) && \valid(code);
assigns pattern->table_length;
assigns pattern->match_identifiers[0..1]
[\old (pattern->table_length)]
[0..\max (strlen (pattern_identifier),
63)1;
ensures strncmp (pattern->match_identifiers[0]
[pattern—->table_length],
pattern->identifier, 63);
ensures strncmp (pattern->match_identifiers[1]
[pattern—->table_length],
pattern->identifier, 63);
ensures pattern->table_length =
\old (pattern->table_length)+1;
*/

void add_identifier (struct pattern_nodex pattern,

struct program_nodex code)
{

strncpy (pattern->match_identifiers[O0]

[pattern->table_length],

pattern->identifier, 63);
strncpy (pattern->match_identifiers[1]

[pattern—->table_length],

code->identifier, 63);

pattern->table_length++;

Another case study directly concerns the tree match-
ing process. When comparing the pattern tree node with
a node of the program tree we also need to correlate the
node attributes, including attribute category. The function
compare_categories implements such comparison. If the
category fields of the current tree nodes are equal, then this
function returns 1. Otherwise, it returns 0.

/%@
requires \valid(pattern) && \valid(code) &&
pattern->has_category == 1;
behavior comparable:
assumes strlen(pattern_category) ==
strlen (code_category)
&&

'We use ACSL [2] as a specification language.

\forall int 1i;
0 <= i <= strlen(code_category)
==>
pattern_category[i] ==
code_category[i];
ensures \result == 1;

behavior incomparable:
assumes
\exist int i;
0 <= i <= \min(strlen (pattern_category),
strlen (code_category))

&&
pattern_category[i] !'= code_category([i];
ensures \result == 0;

*/

int compare_categories (
struct pattern_nodex pattern,
struct program_node* code)

int result = 1;

if ((pattern->has_category) &&
(strcmp (pattern->category,
code—->category)
'=0))
{
result = 0;
}

return result;

Unlike the code nodes, a pattern node may omit the
information about syntactic constructions it can be compared
to, i.e. its category field can be empty. Usually it takes
place when a pattern can match any sequence (including
empty) of program constructs. However, such situation is
handled somewhere on the outer level, thus we implic-
itly suppose that pattern—->has_category == 1 when
compare_categories is invoked.

Based upon specifications of string routines strlen,
strncpy and strcmp from our earlier work [11] the ver-
ification of these two functions is quite straightforward. The
other parts of MetaVCG involve loop invariants or recursive
function calls and, thus, are bulky to be described here.

IV. CONCLUSION

In our project, we are pursuing two objectives. First, we
need a collection of VCGs for various classes of programs to
simplify the verification. This will make verification available
not only for theoreticians, but also for ordinary programmers.
Second, we would like to guarantee the correctness of our
method as much as possible. Apart from theoretical soundness,
its implementation also requires validation. The situation when
a verification system is written in the target language gives us
an opportunity to apply it to itself.

In order to make the creation of such “convenient and
verified verifier” more feasible we adapted the MetaVCG
approach. First of all, we adapted the metageneration approach
and implemented it with some modification using the C-
light language. Then the code was supplemented with ACSL
annotations. Let us note that they rely deeply on specifications
for the Standard C library (mainly string routines) developed

in our previous works [11]. Finally, a series of experiments
was performed in order to verify the MetaVCG.

It is difficult to carry out a qualitative comparison with
related works. It appears that the approach of Moricony and
Schwartz has not been used by other researchers. And, despite
the fact that there are many verification projects, the studies
related to the development of a self-applicable verification
system are virtually unknown. In many cases researchers
use different languages to implement their systems (like the
functional O’Caml in WHY [4]). Others are concentrated on
verification of different applications (for example, Hyper-V is
studied in detail in the VCC project [3]).

We plan to continue our work on specification and ver-
ification of the components of our system. At the moment,
only a restricted functionality is expressible in a pure C.
Perhaps we will return from C++ API of the Clang compiler
to the standard C in order to achieve an ultimate goal —
the complete self-verification. As for the development of
specialized VCG, the method of finite iterations, developed
by Prof. V.A. Nepomnyaschy [7], is a high priority candidate
for implementation. It resembles the axiomatic semantics for
linear algebra, mentioned in Introduction, and relieves us of
loop invariants.

REFERENCES

[11 Apt K.R., Olderog E.R. Verification of sequential and concurrent pro-
grams. — Berlin etc.: Springer, 1991. — 450 p.

[2] Baudin P, Fillidtre J.C., Marché C., Monate B., Moy Y., Prevosto V.
ACSL: ANSI/ISO C Specification Language
http://www.frama-c.cea.fr/download/acsl_1.4.pdf

[3] Cohen E., Dahlweid M., Hillebrand M.A., Leinenbach D., Moskal M.,
Santen T., Schulte W., Tobies S. VCC: A Practical System for Verifying
Concurrent C // Proc. TPHOLSs 2009. — LNCS. — 2009. — Vol. 5674.
— P. 23-42.

[4] Filliatre J.C., Marché C. Multi-prover verification of C programs // Proc.
ICFEM 2004. — LNCS. — 2004. — Vol. 3308. — P. 15-29.

[5] LV. Maryasov, V.A. Nepomnyaschy, A.V. Promsky, D.A. Kondratyev.
Automatic C Program Verification Based on Mixed Axiomatic Seman-
tics // Proc. Fourth Workshop “Program Semantics, Specification and
Verification: Theory and Applications”. — Yekaterinburg, Russia, June
24, 2013. — pp. 50-59.

[6] Moriconi M., Schwartz R.L. Automatic Construction of Verification
Condition Generators From Hoare Logics // Lect. Notes Comput. Sci.
— Berlin etc., 1981. — Vol. 115. — P. 363-377.

[71 Nepomniaschy V.A. Verification of finite iterations over data structures
/I Programming. — 2002. — N 1. — pp. 3-12. (In Russian)

[8] Nepomniaschy V.A., Anureev LS., Mikhailov LN., Promsky A.V.
Verification-oriented language C-light // System informatics. — Novosi-
birsk, SB RAS publishing house, 2004. — Issue 9: Formal methods and
informatics models. — P. 51-134. (In Russian)

[9] Nepomniaschy V.A., Ryakin O.M. Applied methods of program verifi-
cation. — Moscow, 1988. — 256 p. (In Russian)

[10] Nepomniaschy V.A., Sulimov A.A. Verification of the linear algebra
programs in the system SPECTRUM // Cybernetics and system analysis.
— 1992. — N 5. — pp. 136-144. (In Russian)

[11] A.V. Promsky. C Program Verification: Verification Condition Explana-
tion and Standard Library // Automatic Control and Computer Sciences,
2012, Vol. 46, No. 7, pp. 394-401.

[12] Promsky A.V. Experiments on self-applicability in the C-light verifi-
cation system // Bull. Nov. Comp. Center, Comp. Science, 35 (2013),
85-99.

[13] A.V. Promsky Experiments on self-applicability in the C-light verifi-
cation system. Part 2 // Bull. Nov. Comp. Center, Comp. Science, 37
(2014), 93-105.

